Affiliation:
1. Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
Abstract
Abstract
This study compared mixing efficiencies of the symmetric and asymmetric airfoil blades in a continuous stirred tank reactor (CSTR) at various mixing velocities and angles of attack. The symmetric airfoil blades (NACA0009 and NACA0015) and asymmetric airfoil blades (NACA2414 and NACA4412) were set at different angles of attack and mixing velocities. The tank reactor was equipped with two sets of three airfoil blades at the upper and the lower parts of the stirring shafts at the angles of attack 0 deg, 10 deg, 16 deg, and 20 deg, and the mixing velocities of 80, 110, 140, and 190 rpm. The mixing efficiencies were evaluated from the homogenous appearance of plastic particles (5 mm in diameter) dispersed in water by an image processing technique. The results indicated that the mixing efficiencies of both the symmetric and asymmetric airfoil blades increased with increasing mixing velocities and at the angles of attack 0 deg and 10 deg, and slightly decreased with increasing mixing velocities at the angles of attack 16 deg and 20 deg due to the blade stall and mixing saturation as well as short-circuiting flow from the high flowrate. There was no significant mixing velocity effect on mixing efficiencies at the angles of attack 10 deg, 16 deg, and 20 deg except 0 deg of the symmetric and asymmetric airfoil blade systems. The two asymmetric airfoil blade types gave higher mixing efficiencies than the two symmetric airfoil blade types. The results from this study can be applied for a novel blade design for an efficient mixing flow, which will be beneficial for industrial biogas production.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献