Mixing Efficiency Comparison of Symmetric and Asymmetric Airfoil Blades in a Continuous Stirred Tank Reactor

Author:

Woradej Manosroi1,Jirayu Thongsanitkarn1,Parinya Ruangsak1

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand

Abstract

Abstract This study compared mixing efficiencies of the symmetric and asymmetric airfoil blades in a continuous stirred tank reactor (CSTR) at various mixing velocities and angles of attack. The symmetric airfoil blades (NACA0009 and NACA0015) and asymmetric airfoil blades (NACA2414 and NACA4412) were set at different angles of attack and mixing velocities. The tank reactor was equipped with two sets of three airfoil blades at the upper and the lower parts of the stirring shafts at the angles of attack 0 deg, 10 deg, 16 deg, and 20 deg, and the mixing velocities of 80, 110, 140, and 190 rpm. The mixing efficiencies were evaluated from the homogenous appearance of plastic particles (5 mm in diameter) dispersed in water by an image processing technique. The results indicated that the mixing efficiencies of both the symmetric and asymmetric airfoil blades increased with increasing mixing velocities and at the angles of attack 0 deg and 10 deg, and slightly decreased with increasing mixing velocities at the angles of attack 16 deg and 20 deg due to the blade stall and mixing saturation as well as short-circuiting flow from the high flowrate. There was no significant mixing velocity effect on mixing efficiencies at the angles of attack 10 deg, 16 deg, and 20 deg except 0 deg of the symmetric and asymmetric airfoil blade systems. The two asymmetric airfoil blade types gave higher mixing efficiencies than the two symmetric airfoil blade types. The results from this study can be applied for a novel blade design for an efficient mixing flow, which will be beneficial for industrial biogas production.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3