A Resonant Metamaterial Line Array for Ultrasound Compressive Imaging

Author:

Ghanbarzadeh-Dagheyan Ashkan1,Molaei Ali2,Heredia-Juesas Juan3,Martinez-Lorenzo Jose Angel3

Affiliation:

1. Department of Mechanical Engineering, Northeastern University, Boston, MA 02115

2. Department of Electrical Engineering, Northeastern University, Boston, MA 02115

3. Department of Mechanical Engineering, Department of Electrical Engineering, Northeastern University, Boston, MA 02115

Abstract

Abstract Acoustic metamaterials have been proposed for numerous applications including subwavelength imaging, impedance matching, and lensing. Yet, their application in compressive sensing and imaging has not been fully investigated. When metamaterials are used as resonators at certain frequencies, they can generate random radiation patterns in the transmitted waves from the transducers and received waves from a target. Compressive sensing favors such randomness inasmuch as it can increase incoherence by decreasing the amount of mutual information between any two different measurements. This study aims at assessing whether the use of resonating metamaterial unit cells in a single-layered non-optimized array between a number of ultrasound transceivers and targets can improve the sensing capacity, point-spread function of the sensing array (their beam focusing ability), and imaging performance in point-like target detection. The theoretical results are promising and can open the way for more efficient metamaterial designs with the aim of enhancing ultrasound imaging with lower number of transceivers compared to the regular systems.

Funder

Department of Energy

NSF-CAREER

Publisher

ASME International

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3