Optimization of Micropencil Grinding Tools Via Electrical Discharge Machining

Author:

Arrabiyeh Peter A.1,Dethloff Maximilian1,Müller Christopher1,Kirsch Benjamin1,Aurich Jan C.1

Affiliation:

1. Institute for Manufacturing Technology and Production System, TUK University of Kaiserslautern, P.O. Box 3049, Kaiserslautern 67653, Germany e-mail:

Abstract

Micropencil grinding tools (MPGTs) are micromachining tools that use superabrasives like diamond and cubic boron nitride (cBN) grits to manufacture complex microstructures in a broad range of hard and brittle materials. MPGTs suffer from a rather low tool life, when compared to other more established microprocessing methods. It was documented that when used on hardened steel workpieces, MPGTs suffer from a large amount of adhesions, mostly located at the pivot point of the tool. These adhesions lead to the clogging of the abrasive layer and ultimately in tool failure. Another problem this machining process suffers from is the formation of substructures (smaller channels inside the microchannels). The pivot is usually less prone to abrasive wear, has higher protrusion, and is therefore responsible for the deepest substructures. These substructures can easily take up half the depth of cut, obstructing the function of machined microchannels—it is one of the major flaws of this micromachining process. A micro-electrical discharge machining method (μEDM) can solve these issues by manufacturing a cavity at the pivot of these tools. A novel method that uses measurement probes to position the substrate above the μEDM electrode is implemented and a parameter study to determine the cavity manufacturing parameters is conducted for substrates with diameters < 40 μm. The goal is to demonstrate the first ever complete and reliable manufacturing process for MPGTs with a cavity and to demonstrate the advantages they provide in a machining process when compared to regular MPGTs.

Funder

Deutsche Forschungsgemeinschaft

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3