Temperature Rise in Polymeric Materials During High Rate Deformation

Author:

Garg M.1,Mulliken A. D.1,Boyce M. C.1

Affiliation:

1. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139-4307

Abstract

Many polymeric materials undergo substantial plastic strain prior to failure. Much of this post yield deformation is dissipative and, at high strain rates, will result in a substantial temperature rise in the material. In this paper, an infrared (IR) detector system is constructed to measure the rise in temperature of a polymer during high strain rate compression testing. Temperature measurements were made using a high-speed mercury-cadmium-telluride (HgCdTe) single-element photovoltaic detector sensitive in the mid-infrared spectrum (6–12μm), while mechanical deformation was accomplished in a split Hopkinson pressure bar (SHPB). Two representative polymers, an amorphous thermoplastic (polycarbonate (PC)) and a thermoset epoxy (EPON 862/W), were tested in uniaxial compression at strain rates greater than 1000s−1 while simultaneously measuring the specimen temperature as a function of strain. For comparison purposes, analogous measurements were conducted on these materials tested at a strain rate of 0.5s−1 on another test system. The data are further reduced to energy quantities revealing the dissipative versus storage character of the post yield work of deformation. The fraction of post yield work that is dissipative was found to be a strong function of strain for both polymers. Furthermore, a greater percentage of work is found to be dissipative at high rates of strain (>1000s−1) than at the lower rate of strain (0.5s−1) for both polymers; this is consistent with the need to overcome an additional energy barrier to yield at strain rates greater than 100s−1 in these two polymers. The highly cross-linked thermoset polymer was found to store a greater percentage of the post yield work of deformation than the physically entangled thermoplastic.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference32 articles.

1. Protecting the Future Force: Transparent Materials Safeguard the Army’s Vision;Sands;Advanced Materials and Processes Technology Information Analysis Center Quarterly

2. The Stored Energy of Cold Work;Bever

3. Heat and Stored Energy of Plastic Deformation of Solid Polymers and Heterogeneous Blends;Salamatina;J. Therm. Anal.

4. Latent Energy of Deformation of Bisphenol A Polycarbonate;Adams;J. Polym. Sci., Part B: Polym. Phys.

5. Stored Energy of Cold Work in Polystyrene;Chang;Polym. Eng. Sci.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3