An Investigation of Heat Transfer in a Cavity Flow in the Noncontinuum Regime

Author:

Christou Chariton1,Kokou Dadzie S.1

Affiliation:

1. School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK

Abstract

Volume diffusion (or bi-velocity) continuum model offers an alternative modification to the standard Navier–Stokes for simulating rarefied gas flows. According to this continuum model, at higher Knudsen numbers the contribution of molecular spatial stochasticity increases. In this paper, we study a microcavity heat transfer problem as it provides an excellent test for new continuum flow equations. Simulations are carried out for Knudsen numbers within the slip and higher transition flow regimes where nonlocal-equilibrium and rarefaction effects dominate. We contrast the predictions by a Navier–Stokes model corrected by volume diffusion flux in its constitutive equations to that of the direct simulation Monte Carlo (DSMC) method and the standard Navier–Stokes model. The results show improvement in the Navier–Stokes prediction for the high Knudsen numbers. The new model exhibits proper Knudsen boundary layer in the temperature and velocity fields.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3