Affiliation:
1. Department of Applied Mathematics and Computer Science, University of Virginia, Charlottesville, Va.
Abstract
A general nonlinear theory for thin shells of arbitrary midsurface geometry is formulated in terms of a finite rotation vector and a stress-function vector. Compatibility equations, equilibrium equations, and boundary conditions are derived which are valid for shells undergoing arbitrarily large rotations and strains. For problems admitting a potential energy functional, a variational principle is formulated. The simplifications implied by small extensional strains are discussed. The theory contains, as special cases, Reissner’s equations for the axisymmetric deformation of shells of revolution, and the Sanders-Koiter linear shell theory.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
116 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献