Affiliation:
1. Department of Mechanical Engineering, The Ohio State University, Columbus, OH 43210
2. Department of Industrial, Welding, and Systems Engineering, The Ohio State University, Columbus, OH 43210
Abstract
The mechanical behavior of amorphous thermoplastics, such as poly(methyl methacrylate) (PMMA), strongly depends on temperature and strain rate. Understanding these dependencies is critical for many polymer processing applications and, in particular, for those occurring near the glass transition temperature, such as hot embossing. In this study, the large strain mechanical behavior of PMMA is investigated using uniaxial compression tests at varying temperatures and strain rates. In this study we capture the temperature and rate of deformation dependence of PMMA, and results correlate well to previous experimental work found in the literature for similar temperatures and strain rates. A three-dimensional constitutive model previously used to describe the mechanical behavior of another amorphous polymer, poly(ethylene terephthalate)-glycol (PETG), is applied to model the observed behavior of PMMA. A comparison with the experimental results reveals that the model is able to successfully capture the observed stress-strain behavior of PMMA, including the initial elastic modulus, flow stress, initial strain hardening, and final dramatic strain hardening behavior in uniaxial compression near the glass transition temperature.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献