Servo Scanning EDM for 3D Micro Structures

Author:

Li Yong1,Tong Hao2,Cui Jing1,Wang Yang2

Affiliation:

1. Tsinghua University, Beijing, China

2. Harbin Institute of Technology, Harbin, China

Abstract

In electro discharge machining (EDM) for 3D micro structures, the electrode wear is serious and it needs to be compensated in process. To obtain a better balance of the machining accuracy and efficiency, a servo scanning EDM method is proposed for 3D micro structures, in which the electrode wear is compensated on real-time by controlling the discharge gap constant. It is supposed reasonably that the machining depth of each layer in servo scanning EDM is consistent if discharge gap is kept preferably. The servo scanning EDM strategies include the model design by Pro/Engineer (Pro/E), the plan and simulation of scanning path, and the machining process. The 3D micro structures are machined by scanning layer-by-layer under servo control of the electrode with monitoring discharge gap signal. The CAM, gap servo control, and real-time electrode wear compensating are integrated into the machining system. The evaluation experiments of servo scanning EDM and the typical machining experiments of 3D micro structures have been carried out. The machining results show that the electro discharge in the servo scanning EDM is more stable. Servo scanning micro EDM is propitious to improve machining accuracy and efficiency in 3D micro structures.

Publisher

ASMEDC

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vibration-Assisted SS-3D Micro EDM;Servo Scanning 3D Micro Electro Discharge Machining;2022-06-22

2. Basic Principle;Servo Scanning 3D Micro Electro Discharge Machining;2022-06-22

3. Servo control optimization of micro discharge gap and its reasonable matching with scanning speed in servo scanning 3D micro EDM based on threshold control method;The International Journal of Advanced Manufacturing Technology;2019-11-09

4. Electrode wear phenomenon and its compensation in micro electrical discharge milling: A review;Materials and Manufacturing Processes;2018-04-04

5. Algorithms and machining experiments to reduce depth errors in servo scanning 3D micro EDM;Precision Engineering;2014-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3