On the Prediction of Swirling Flowfields Found in Axisymmetric Combustor Geometries

Author:

Rhode D. L.1,Lilley D. G.2,McLaughlin D. K.3

Affiliation:

1. College Station, Texas; School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, Okla. 74078

2. School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, Okla. 74078

3. Torrance, Calif.; School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, Okla. 74078

Abstract

Combustor modeling has reached the stage where the most useful research activities are likely to be on specific sub-problems of the general three-dimensional turbulent reacting flow problem. The present study is concerned with a timely fluid dynamic research task of interest to the combustor modeling community. Numerical computations have been undertaken for a basic two-dimensional axisymmetric flowfield which is similar to that found in a conventional gas turbine combustor. A swirling nonreacting flow enters a larger chamber via a sudden or gradual expansion. The calculation method includes a stairstep boundary representation of the expansion flow, a conventional k-ε turbulence model and realistic accommodation of swirl effects. The results include recirculation zone characterization and predicted mean streamline patterns. In addition, an experimental evaluation using flow visualization of neutrally-buoyant helium-filled soap bubbles is yielding very promising results. Successful outcomes of the work can be incorporated into the more combustion- and hardware-oriented activities of gas turbine engine manufacturers, including incorporating the modeling aspects into already existing comprehensive numerical solution procedures.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3