Rolling Element Bearing Vibration Transfer Characteristics: Effect of Stiffness

Author:

While M. F.1

Affiliation:

1. Institute of Sound and Vibration Research, The University, Southampton, England

Abstract

Vibration transmission through rolling element bearings was investigated in order to aid signal interpretation for use in machinery condition monitoring studies. The relationship between bearing nonlinear stiffness and frequency response function was derived for bearings of types commonly used in rotating machinery. By considering the contact deformation of individual elements the stiffness characteristic for a complete bearing was evaluated for the case of a radially applied load. Variation in stiffness of the complete bearing as elements moved through the load zone was calculated for bearings of a specified type and size. These values were also used to dynamically model typical rolling element bearing nonlinear behavior. Derived nonlinear stiffness coefficients were substituted into the equations of motion for a model bearing. Solution was obtained by digital integration, and the bearing frequency response function was then evaluated for discrete increments of static loading. Rolling element bearing frequency response was found to be very dependent on load. For operation under light load the bearings had especially strong nonlinear vibration transfer characteristics. At this operating condition a small increase in radial load produced a significant change in the bearing transfer characteristic (due to an increase in resonance frequency).

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3