Comparative Study of Machine Learning Methods for State of Health Estimation of Maritime Battery Systems

Author:

Grindheim Christian Alm112,Stakkeland Morten13,Glad Ingrid Kristine44,Vanem Erik15

Affiliation:

1. University of Oslo Department of Mathematics, , Oslo 0316 , Norway ;

2. Skatteetaten , Oslo 0134 , Norway

3. ABB Marine & Ports , Fornebu 1360 , Norway

4. University of Oslo Department of Mathematics, , Oslo 0316 , Norway

5. DNV Group Research & Development , Høvik 1363 , Norway

Abstract

Abstract This paper tests two data-driven approaches for predicting the state of health (SOH) of lithium-ion-batteries (LIBs) for the purpose of monitoring maritime battery systems. First, non-sequential approaches are investigated and various models are tested: ridge, lasso, support vector regression, and gradient boosted trees. Binning is proposed for feature engineering for these types of models to capture the temporal structure in the data. Such binning creates histograms for the accumulated time the LIB has been within various voltage, temperature, and current ranges. Further binning to combine these histograms into 2D or 3D histograms is explored in order to capture relationships between voltage, temperature, and current. Second, a sequential approach is explored where different deep learning architectures are tried out: long short-term memory, transformer, and temporal convolutional network. Finally, the various models and the two approaches are compared in terms of their SOH prediction ability. Results indicate that the binning with ridge regression models performed best. The same publicly available sensor data from laboratory cycling tests are used for both approaches.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3