Computation of a Loosely Supported Tube Under Cross-Flow by a Hybrid Time-Frequency Method

Author:

Piteau Philippe1,Borsoi Laurent1,Delaune Xavier1,Politopoulos Ioannis1,Antunes Jose2

Affiliation:

1. CEA, DEN, DM2S, SEMT, Gif-Sur-Yvette, France

2. Universidade de Lisboa, Bobadela LRS, Portugal

Abstract

Flow-induced vibrations of heat-exchanger tubes are particularly analyzed in the nuclear industry for safety reasons. Adequate designs, such as anti-vibration bars in PWR steam generators, prevent any excessive vibrations provided the tubes are well supported. Nevertheless degraded situations, where the tube/support gaps would widen, must also be considered. In such a case, the tubes become loosely supported and may exhibit vibro-impacting responses due to both turbulence and fluid-elastic coupling forces induced by the cross-flow. This paper deals with the predictive analysis of such a situation, based on a time-frequency hybrid method, given the necessity of taking into account both the strong impact nonlinearity due to the gap and the linearized fluid-elastic forces defined in the frequency domain. It comprises four parts. 1) The experimental campaign carried out at CEA Saclay on this issue, with a rigid square bundle surrounding a flexible cantilever tube under water cross-flow, is briefly recalled. 2) The hybrid time-frequency method is presented. The technique consists in an iterative solving, going back and forth from the frequency domain to the time domain, until convergence. Focus is made on the key points that are the algorithm convergence, and the non-causality of fluid-elastic forces stemming from the extrapolation of the frequency-limited experimental data. 3) The experimental and computational results are compared for a large range of flow velocities and three values of gaps, with a satisfying overall agreement. The comparison includes also previous results obtained from a simplified method based on the concept of “instantaneous” frequency. 4) Finally two a priori surprising behaviors are noted in the energy balances that have been computed: the sometimes dissipative aspect of turbulence forces, and the “mirror effect” between the work of turbulence and fluid-elastic forces.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3