The Rise of Bubbles in a Vertical Shear Flow

Author:

Ervin E. A.1,Tryggvason G.2

Affiliation:

1. Department of Mechanical and Aerospace Engineering, The University of Dayton, Dayton, OH 45469

2. Department of Mechanical Engineering and Applied Mechanics, The University of Michigan, Ann Arbor, MI 48109

Abstract

Full numerical simulations of two- and three-dimensional bubbles in a shear flow, by a finite difference front tracking method, are presented. The effects of inertial, viscous, gravitational, and surface forces on the lift of a deformable bubble rising due to buoyancy in a vertical shear flow, are examined. Bubbles with a large surface tension coefficient migrate toward the downward moving fluid, as predicted analytically for a cylinder or a sphere in a shear flow. Bubbles with smaller surface tension deform, and generally migrate in the opposite direction. The combined effects of the shear flow and the buoyancy deform the bubble in such a way that the circulation around the deformed bubbles is opposite to that of undeformed bubbles.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3