Photovoltaics Energy Prediction Under Complex Conditions for a Predictive Energy Management System

Author:

Schmelas Martin1,Feldmann Thomas2,da Costa Fernandes Jesus2,Bollin Elmar2

Affiliation:

1. Institute of Energy System Techniques, Offenburg University of Applied Sciences, Badstr. 24, Offenburg 77652, Germany e-mail:

2. Institute of Energy System Techniques, Offenburg University of Applied Sciences, Badstr. 24, Offenburg 77652, Germany

Abstract

Solar energy converted and fed to the utility grid by photovoltaic modules has increased significantly over the last few years. This trend is expected to continue. Photovoltaics (PV) energy forecasts are thus becoming more and more important. In this paper, the PV energy forecasts are used for a predictive energy management system (PEMS) in a positive energy building. The publication focuses on the development and comparison of different models for daily PV energy prediction taking into account complex shading, caused for example by trees. Three different forecast methods are compared. These are a physical model with local shading measurements, a multilayer perceptron neural network (MLP), and a combination of the physical model and the neural network. The results show that the combination of the physical model and the neural network provides the most accurate forecast values and can improve adaptability. From April to December, the mean percentage error (MPE) of the MLP with physical information is 11.6%. From December to March, the accuracy of the PV predictions decreases to an MPE of 78.8%. This is caused by poorer irradiation forecasts, but mainly by snow coverage of the PV modules.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3