The Performance Impact of Integrating Water Storage Into a Chiller-Less Data Center Design

Author:

Rose Isaac1,Wemhoff Aaron P.1,Fleischer Amy S.2

Affiliation:

1. Department of Mechanical Engineering,Villanova University,Villanova, PA 19085

2. Department of Mechanical Engineering,Villanova University,Villanova, PA 19085e-mail: amy.fleischer@villanova.edu

Abstract

Abstract Data centers consume an extraordinary amount of electricity, and the rate of consumption is increasing at a rapid pace. Thus, energy efficiency in data center design is of substantial interest since it can have a significant impact on operating costs. The server cooling infrastructure is one area which is ripe for design innovation. Various designs have been considered for air-cooled data centers, and there is growing interest in liquid-cooled server designs. One potential liquid-cooled solution, which reduces the cost of cooling to less than 5% of the information technology (IT) energy use, is a chiller-less or warm water-cooled system, which removes the chiller from the design and lets the cooling water supply vary with changes in the outdoor ambient conditions. While this design has been proven to work effectively in some locations, environmental extremes prevent its more widespread implementation. In this paper, the design and analysis of a cold water storage system are shown to extend the applicability of chiller-less designs to a wider variety of environmental conditions. This can lead to both energy and economic savings for a wide variety of data center installations. A numerical model of a water storage system is developed, validated, and used to analyze the impact of a water storage tank system in a chiller-less data center design featuring outdoor wet cooling. The results show that during times of high wet bulb operating conditions, a water storage tank can be an effective method to significantly reduce chip operating temperatures for warm water-cooled systems by reducing operating temperatures 5–7 °C during the hottest part of the day. The overall system performance was evaluated using both an exergy analysis and a modified power usage effectiveness (PUE) metric defined for the water storage system. This unique situation also necessitates the development of a new exergy definition in order to properly capture the physics of the situation. The impacts of tank size, tank aspect ratio, fill percentage, and charging/discharging time on both the chip temperature and modified PUE are evaluated. It is determined that tank charging time must be carefully matched to environmental conditions in order to optimize impact. Interestingly, the water being stored is initially above ambient, but the overall system performance improves with lower water temperatures. Therefore, heat losses to ambient are found to beneficial to the overall system performance. The results of this analysis demonstrate that in application, data center operators will see a clear performance benefit if water storage systems are used in conjunction with warm water cooling. This application can be extended to data center failure scenarios and could also lead to downsizing of equipment and a clear economic benefit.

Funder

Directorate for Engineering

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3