A Semi-Infinite Hydraulic Fracture Driven by a Herschel–Bulkley Fluid

Author:

Bessmertnykh Alena O.1,Dontsov Egor V.2

Affiliation:

1. Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204

2. W.D. Von Gonten Laboratories, 10496 Katy Fwy, Houston, TX 77043

Abstract

Abstract Hydraulic fracturing is an industrial process often applied to enhance oil and gas recovery. Under this process, fractures are generated by the injection of highly pressurized fluids, which often exhibit shear-thinning rheology and yield stress. The global fracture propagation is influenced by various processes occurring near the fracture tip. To gain an insight into fracture propagation, the problem of a semi-infinite hydraulic fracture propagating in a permeable linear elastic rock is solved. To investigate the effect of fluid yield stress, we focus on a fracture driven by Herschel–Bulkley fluid. The mathematical model consists of the elasticity equation, the lubrication equation, and the propagation criterion for the semi-infinite plane strain fracture to obtain the fracture opening. The non-linear system of governing equations is represented in the non-singular form and solved numerically using Newton’s method. The solution is influenced by the competing processes related to rock toughness, fluid properties, and leak-off. The effects of these phenomena prevail at different length scales, and the corresponding limits can be described via analytical solutions. For a Herschel-Bulkley fluid, an additional limiting solution related to the fluid yield stress is obtained, and the regions of the dominance of limiting solutions affected by the yield stress are investigated. Finally, a faster approximate solution for the problem is proposed and its accuracy against a numerical solution is evaluated. The obtained result can be applied in hydraulic fracturing simulators to account for the effect of Herschel–Bulkley fluid rheology on the near-tip region.

Funder

University of Houston

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3