Shock and Dynamic Loading in Portable Electronic Assemblies: Modeling and Simulation Results

Author:

Askari Farahani A. F.1,Al-Bassyiouni M.1,Dasgupta A.1

Affiliation:

1. Mechanical Engineering Department, Center for Advanced Life Cycle Engineering (CALCE), University of Maryland, College Park, MD 20742

Abstract

In this study, the transient response of electronic assemblies to mechanical loading encountered in drop and shock conditions are investigated with transient finite element methods. Many manufacturers face design challenges when evolving new designs for high strain-rate life cycle loading. Examples of high strain-rate loading include drop events, blast events, vibration, ultrasonic process steps, etc. New design iterations invariably bring new unexpected failure modes under such loading and costly trial-and-error design fixes are often necessary after the product is built. Electronics designers have long sought to address these effects during the design phase, with the aid of computational models. However, such efforts have been difficult because of the nonlinearities inherent in complex assemblies and complex dynamic material properties. Our goal in this study is to investigate the ability of finite element models to accurately capture the transient response of a complex portable electronic product under shock and drop loading. Finite element models of the system are generated and calibrated with experimental results, first at the subsystem level to calibrate material properties and then at the product level to parametrically investigate the contact mechanics at the interfaces. The parametric study consists of sensitivity studies for different ways to model soft, nonconservative contact, as well as structural damping of the subassembly under assembly boundary conditions. The long-term goal of this study is to demonstrate a systematic modeling methodology to predict the drop response of future portable electronic products, so that relevant failure modes can be eliminated by design iterations early in the design cycle.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Reference17 articles.

1. Improving Impact Tolerance of Portable Electronic Products: Case Study of Cellular Phones;Goyal;Exp. Mech.

2. Numerical Simulation of the Drop Impact Response of a Portable Electronic Product;Lim;IEEE Trans. Compon. Packag. Technol.

3. Impact Life Prediction Modeling of TFBGA Packages Under Board Level Drop Test;Tee;Microelectron. Reliab.

4. Free Drop Test Simulation for Portable IC Package by Implicit Transient Dynamics FEM;Irving

5. Novel Board Level Drop Test Simulation Using Implicit Transient Analysis With Input-G Method;Luan

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3