A DEM-FEM Coupling Approach for the Direct Numerical Simulation of 3D Particulate Flows

Author:

Avci B.1,Wriggers P.1

Affiliation:

1. Institute of Continuum Mechanics, Leibniz University of Hannover, Appelstrasse 11, 30167 Hannover, Germany

Abstract

Abstract A computational approach is presented in this paper for the direct numerical simulation of 3D particulate flows. The given approach is based on the fictitious domain method, whereby the Discrete Element Method (DEM) and the Finite Element Method (FEM) are explicitly coupled for the numerical treatment of particle-fluid interactions. The particle properties are constitutively described by an adhesive viscoelastic model. To compute the hydrodynamic forces, a direct integration method is employed, where the fluid stresses are integrated over the particles’ surfaces. For the purpose of verifying the presented approach, computational results are shown and compared with those of the literature. Finally, the method is applied for the simulation of an agglomeration example.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine-learning a perfect bending soccer goal shot;Computer Methods in Applied Mechanics and Engineering;2023-10

2. Finite element method–discrete element method bridging coupling for the modeling of gouge;International Journal for Numerical Methods in Engineering;2022-11-30

3. Models and simulations as enabling technologies for bioprinting process design;Bioprinting;2022

4. From the Pioneering Contributions by Wriggers to Recent Advances in Computational Tribology;Current Trends and Open Problems in Computational Mechanics;2022

5. Contact between rigid convex NURBS particles based on computer graphics concepts;Computer Methods in Applied Mechanics and Engineering;2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3