Behavior of the Two-Phase Mushy Zone During Freeze Coating on a Continuous Moving Plate

Author:

Tangthieng C.1,Cheung F. B.1,Shiah S. W.2

Affiliation:

1. Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802

2. Department of Naval Architecture and Marine Engineering, Chung Cheng Institute of Technology, Tao-Yuan, Taiwan

Abstract

The process of freeze coating of a binary substance on a chilled moving plate is studied theoretically with special emphasis on the behavior of the two-phase mushy zone. The flow and heat transfer in five separate regions of the system, i.e., the moving plate, the freeze coat, the two-phase packing region, the two-phase dispersed region and the molten substance region, are formulated mathematically to describe the freeze-coating process. A supplemental equation derived from a simplified phase diagram and an appropriate viscosity model are employed to complete the mathematical description of the two-phase mushy zone. The system of equations is solved by a combined analytical-numerical technique to determine the spatial variations of the solidus and liquidus fronts. Effects of seven controlling parameters, including the freeze coat-to-wall thermal ratio, the wall subcooling parameter, the molten substance superheating parameter, the Prandtl number, the Stefan number, the equilibrium partition ratio, and the packing limit fraction, on the behavior of the two-phase mushy zone and the freeze-coating process are determined.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using fiber-optic sensors to give insight into liquid-solid phase transitions in pure fluids and mixtures;Experimental Thermal and Fluid Science;2020-11

2. Global conservation model for a mushy region over a moving substrate;Physics of the Earth and Planetary Interiors;2018-03

3. Solidification and Flow of a Binary Alloy Over a Moving Substrate;Transport in Porous Media;2017-11-23

4. Forced flow and solidification over a moving substrate;Applied Mathematical Modelling;2016-01

5. Literature Survey of Numerical Heat Transfer (2000–2009): Part I;Numerical Heat Transfer, Part A: Applications;2010-03-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3