Order-of-Magnitude Increase in Carbon Nanotube Yield Based on Modeling Transient Diffusion and Outgassing of Water from Reactor Walls

Author:

Tomaraei Golnaz1,Abdulhafez Moataz2,Bedewy Mostafa3

Affiliation:

1. 1025 Benedum Hall 3700 O'Hara Street PA, PA 15261

2. 1035 Benedum Hall 3700 O'Hara Street Pittsburgh, PA 15261

3. 3700 O'Hara St. 805 Benedum Hall Pittsburgh, PA 15261

Abstract

Abstract While reactor wall preconditioning was previously shown to influence the yield in chemical vapor deposition (CVD), especially for coatings of carbon nanotubes (CNTs), it was limited to studying accumulating deposits over a number of runs. However, the effects of temperature and duration as the reactor walls are exposed to hot humidity for an extended period of time between growth runs was not previously studied systematically. Here, we combine experimental measurements with a mathematical model to elucidate how thermochemical history of reactor walls impacts growth yield of vertically aligned CNT films. Importantly, we demonstrate one-order-of-magnitude higher CNT yield, by increasing the interim, i.e., the time between runs. We explain the results based on previously unexplored process sensitivity to trace amounts of oxygen-containing species in the reactor. In particular, we model the effect of small amounts of water vapor desorbing from reactor walls during growth. Our results reveal the outgassing dynamics, and show the underlying mechanism of generating growth promoting molecules. By installing a humidity sensor in our custom-designed multizone rapid thermal CVD reactor, we are able to uniquely correlate the amount of moisture within the reactor to real-time measurements of growth kinetics, as well as ex situ characterization of CNT alignment and atomic defects. Our findings enable a scientifically grounded approach toward both boosting growth yield and improving its consistency by reducing run-to-run variations. Accordingly, engineered dynamics recipes can be envisioned to leverage this effect for improving manufacturing process scalability and robustness.

Funder

Directorate for Engineering

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3