Optimization of Turbomachinery Flow Surfaces Applying a CFD-Based Throughflow Method

Author:

Pasquale David1,Persico Giacomo2,Rebay Stefano1

Affiliation:

1. Dipartimento di Ingegneria Meccanica e Industriale, Universita degli Studi di Brescia, Via Branze 38, Brescia 25123, Italy e-mail:

2. Laboratorio di Fluidodinamica delle Macchine, Dipartimento di Energia, Politecnico di Milano, via Lambruschini 4, Milano 21056, Italy e-mail:

Abstract

This work proposes an automated strategy for the preliminary design of turbomachinery, based on the application of a throughflow code and of a highly flexible and efficient optimization strategy. The code solves for the circumferentially-averaged flow equations, including the effects of aerodynamic and friction forces and of blade thickness; the outcome of the code is the flow distribution on the meridional surface. The fluid-dynamic solver is coupled with the optimization tool in order to determine the “optimal” mean flow surface, as a result of a multiobjective optimization procedure, in which nonconcurrent goals are simultaneously considered. A global optimization strategy is applied, based on the combination of a Genetic Algorithm with a metamodel to tackle the computational cost of the process. The optimization method is applied to a low speed axial compressor, for which the optimization goals are the minimization of aerodynamic loss and discharge kinetic energy at the exit of the stage, as well as the uniformity of work exchange along the blade span. The method proves to match all the objectives, providing a clear improvement with respect to classical and well-established design methods. The optimization provided by the automated design is finally assessed by high-fidelity calculations performed with a fully three-dimensional CFD code on both the baseline and optimized machine configurations. Improvements are confirmed for all the goals specified in the optimization strategy, resulting in a more efficient machine.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3