Acoustic-Structural Resonances of Thin-Walled Structure—Gas Systems

Author:

Kruntcheva Mariana R.1

Affiliation:

1. Faculty of Engineering and Computing, Coventry University, Priory Street, Coventry, CV1 5FB, UK

Abstract

This paper summarizes a theoretical study, which is a natural continuation of approximately 50 years of research in the field of acoustoelasticity. Recently, the researchers’ interest has been directed towards considering compressible fluid in contact with thin walled structures as it was found that the acoustic-structural coupling significantly changes the dynamic behavior of the system. Despite the interesting findings the main results still need additional, numerical, or experimental verification. The present work is intended to cast more light on the acoustic-structure coupling of light fluid-shell systems using a numerical approach, namely 3-D finite element (FE) modeling. Two different acoustoelastic systems are considered. The first system is a thin circular cylindrical shell containing light fluid in a coaxial annular duct and the second system is a thin-walled vehicle passenger compartment interacting with the enclosed cavity. Both systems are studied using ANSYS finite element code. The modeling involved shell finite elements for the structure and 3-D acoustic elements for the cavity. The 3-D FE modal analysis used produced results visualizing the complex picture of acoustic-structure coupling. It was confirmed that (1) in both fluid-elastic systems the strongest acoustic-structural coupling exists if the resonances of uncoupled acoustic and mechanical systems are close and (2) the nature of the acoustic-structural coupling is identical in the two cases studied. However, it was found that strong coupling between the thin-walled structure and the acoustic cavity exists in the vicinity of any uncoupled acoustic resonance. Thus, the coupled properties of the systems were found to be dominated by the uncoupled acoustic resonances. As the focus of this study is on the mode shapes of vibration, it was found that coupled acoustic-structure modes of vibration exist in the neighborhood of an uncoupled acoustic resonance, which means that the coupled system manifests a specific type of energy exchange. These modes were termed coupled “combined” modes to differentiate from the coupled component responses. It was also found that the coupled “combined” modes are clustered around a rigid-walled cavity mode, and any acoustic-structure resonance of a given group involves this particular uncoupled acoustic mode. In conclusion, it is shown that the acoustic-structure interaction causes the appearance of coupled “combined” modes not existing in the shell in vacuo or rigid-walled acoustic spectrum. It was found also that the subsystems preserve their capability of independent vibration responses, i.e., the response at the component modes is believed to be strong at their uncoupled frequencies.

Publisher

ASME International

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3