Affiliation:
1. Department of Civil, Chemical and Environmental Engineering, University of Genova, Genova 16145, Italy
Abstract
AbstractUpper and lower bounds for the parameters of one-dimensional theories used in the analysis of sandwich fracture specimens are derived by matching the energy release rate with two-dimensional elasticity solutions. The theory of a beam on an elastic foundation and modified beam theory are considered. Bounds are derived analytically for foundation modulus and crack length correction in single cantilever beam (SCB) sandwich specimens and verified using accurate finite element results and experimental data from the literature. Foundation modulus and crack length correction depend on the elastic mismatch between face sheets and core and are independent of the core thickness if this is above a limit value, which also depends on the elastic mismatch. The results in this paper clarify conflicting results in the literature, explain the approximate solutions, and highlight their limitations. The bounds of the model parameters can be applied directly to specimens satisfying specific geometrical/material ratios, which are given in the paper, or used to support and validate numerical calculations and define asymptotic limits.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献