Flow Through a Solar Chimney Power Plant Collector-to-Chimney Transition Section

Author:

Kirstein Carl F.1,von Backström Theodor W.1

Affiliation:

1. Department of Mechanical Engineering, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa

Abstract

A solar chimney power plant consists of a large greenhouse-type collector surrounding a tall chimney. The air, heated within the collector, passes through an inlet guide vane (IGV)cascade and then through a transition section to a turbine that powers a generator. The transition section contains the turbine inlet guide vanes that support the whole chimney and guides the flow entering the turbine. The primary objective of the study was to determine the loss coefficient and mean exit swirl angle of the flow passing through the collector-to-chimney transition section of a full-scale solar chimney power plant as dependent on IGV stagger angle and collector roof height. Very good agreement was found between experimental values measured in a scaled model and commercial CFD code predictions of flow angles, velocity components, and internal and wall static pressures. The agreement between measured and predicted total pressure loss coefficient was reasonable when considering how small it is. The CFD code served to extend the predictions to a proposed full-scale geometry. Semi-empirical equations were developed to predict the loss coefficient and turbine mean inlet flow angles of solar chimney power plants as dependent on collector deck height and inlet guide vane setting angle. The two empirical equations may be useful in solar chimney plant optimization studies.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3