Affiliation:
1. Department of Mechanical Engineering, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
Abstract
A solar chimney power plant consists of a large greenhouse-type collector surrounding a tall chimney. The air, heated within the collector, passes through an inlet guide vane (IGV)cascade and then through a transition section to a turbine that powers a generator. The transition section contains the turbine inlet guide vanes that support the whole chimney and guides the flow entering the turbine. The primary objective of the study was to determine the loss coefficient and mean exit swirl angle of the flow passing through the collector-to-chimney transition section of a full-scale solar chimney power plant as dependent on IGV stagger angle and collector roof height. Very good agreement was found between experimental values measured in a scaled model and commercial CFD code predictions of flow angles, velocity components, and internal and wall static pressures. The agreement between measured and predicted total pressure loss coefficient was reasonable when considering how small it is. The CFD code served to extend the predictions to a proposed full-scale geometry. Semi-empirical equations were developed to predict the loss coefficient and turbine mean inlet flow angles of solar chimney power plants as dependent on collector deck height and inlet guide vane setting angle. The two empirical equations may be useful in solar chimney plant optimization studies.
Subject
Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献