Simulation of the Dynamics of Machinery

Author:

Dix R. C.1,Lehman T. J.1

Affiliation:

1. Mechanics, Mechanical and Aerospace Engineering Department, Illinois Institute of Technology, Chicago, Ill.

Abstract

The dynamics of motion of general, two-dimensional machine systems incorporating linkage elements is studied by a procedure which eliminates equation writing. The method is similar to chemical engineering process analysis procedures utilizing an interconnection matrix to describe attachments between components of a system. A digital computer program based on the procedure, termed the Machine Dynamics-Universal System Analyzer (MEDUSA), has been written and tested. This program contains subroutines for simulating the behavior of the following standard components: rigid links, torsional and linear springs, torsional and linear dashpots, force sources, motion generators, and flexible beams. Gears, chain drives, hydraulic transmissions, electric motors, and other components may be added to the simulation without difficulty. To use the program, the engineer follows a standard method to develop a special subroutine calling various component subroutines in proper order. The program computes the accelerations at the centers of mass of the various rigid elements and the interconnection forces simultaneously. Numerical integration alternating with the acceleration computation determines the position and force history of the machine. Experience shows that the engineering effort needed to develop a dynamic simulation of a general machine system using MEDUSA is greatly reduced compared to deriving the equations of motion.

Publisher

ASME International

Subject

General Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3