Numerical Investigations of Unsteady Flows and Particle Behavior in a Cyclone Separator

Author:

Akiyama Osamu1,Kato Chisachi2

Affiliation:

1. 2-18-1 Toyogaoka, Tama-si, Tokyo 206-0031, Japan e-mail:

2. Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 183-8505, Japan e-mail:

Abstract

Mechanism of particle separation in a cyclone separator is fully clarified by one-way coupled numerical simulations of large eddy simulation and particle tracking. The former resolves all the important vortical structures, while the latter inputs the computed flow fields and tracks trajectories of particles by considering Stokes drag as well as gravity. The computed axial and tangential velocities of the swirl flow in a cyclone compare well with the ones measured by particle image velocimetry (PIV). The precession frequency of the vortex rope computed for Stairmand cyclone also matches with the one measured by Darksen et al. The predicted collection efficiencies reasonably agree well with the measured equivalents for two cylindrical cyclones with different diameters and inflow conditions. Detailed investigations on the simulated vortical structures in the test cyclones and predicted trajectories of the particles have revealed that there are three major paths of trajectories for those particles that are not collected and exhausted from the cyclone. More than half of the exhausted particles are trapped by longitudinal vortices formed in the periphery of the vortex rope. Namely, the precession motion of the vortex rope generates a number of longitudinal vortices at its periphery, which trap particles and move them into the region of the upward swirl.

Publisher

ASME International

Subject

Mechanical Engineering

Reference19 articles.

1. Modeling the Gas and Particle Flow Inside Cyclone Separators;Prog. Energy Combust. Sci.,2007

2. Fundamentals of Cyclone Design and Operation;Proc. Australas. Inst. Min. Metall.,1949

3. Investigations Into Cyclone Dust Collectors;Proc. Inst. Mech. Eng.,1949

4. Advantages and Risks in Increasing Cyclone Separator Length;AIChE J.,2001

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3