Experimental Study and Creep-Fatigue Life Prediction of Turbine Blade Material DZ125 Considering the Nonholding Effect and Coupling Effect of Stress and High Temperature

Author:

Sun Debin1,Wan Zhenhua2

Affiliation:

1. School of Aeronautical Engineering, Shandong University of Aeronautics , No. 391 Huanghe 5th Road, Bincheng District, Binzhou, Shandong 256600, China

2. School of Mechanical Engineering, Guangxi University , No. 100 Daxue East Road, Xixiangtang District, Nanning, Guangxi 530004, China

Abstract

Abstract In response to the problem of creep-fatigue interaction damage failure of aero-engine turbine blade material, based on the modified damage evolution model of Kachanov-Rabotnov and Chaboche, a creep-fatigue life prediction model for nickel-based superalloy DZ125 is constructed considering the nonholding effect and coupling effect of stress and high temperature with the nonlinear interaction and superposition of creep damage and fatigue damage according to the continuum damage mechanics theory. Simultaneously, the microfracture morphology of DZ125 was analyzed using a scanning electron microscope, revealing the micromechanism of creep-fatigue interaction. The research results manifest that the creep-fatigue life prediction model has a high life prediction ability within ±2.0 times the dispersion band of the prediction results. Concurrently, a large number of intertwined tearing edges, microcracks, and microvoids appear in the fracture morphology, and creep and fatigue interact with each other in the form of effective stress. The above research can provide theoretical support for predicting the lifespan of mechanical structures in a high-temperature environment.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3