Numerical Investigation of the Effect of an Axial Pre-Swirl Nozzle With a Radial Angle in a Pre-Swirl Rotor-Stator System

Author:

Zhao Gang1,Ding Shuiting1,Qiu Tian1,Zhang Shenghui1

Affiliation:

1. Beihang University, Beijing, China (Mainland)

Abstract

Abstract Pre-swirl nozzles are often used in gas turbines to deliver the cooling air to the turbine blades. The static axial nozzles swirl the cooling air in the direction of rotation of the turbine disk, thereby reducing the relative total temperature of the air. Most studies about nozzles focus on its shape, radial location, tangential angle to reduce the pressure loss and increase the temperature drop of the pre-swirl system, but few of them consider the benefit of a radial angle of nozzles. This paper investigated numerically the performance of a pre-swirl system whose pre-swirl nozzles have a radial angle. Six radial angles are selected to study the flow dynamics of a direct-transfer pre-swirl system in terms of the total pressure loss coefficient of the pre-swirl cavity, the discharge coefficient of the receiver holes, and the adiabatic effectiveness. It is shown that the nozzles with radial angles can adjust the tangential velocity and radial velocity and thus can influence the performance of a pre-swirl system. There is a lowerest value of total pressure loss in pre-swirl cavity, that is α = 90°, which can hardly be influenced by the radial angle of nozzle and pressure ratio π. For a specific swirl ratio β∞, there exists an optimal αopt where the discharge coefficient of receiver hole is maximum. Moreover, αopt decreases as pressure ratio π increases. And so is the adiabatic effectiveness Θad.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3