Enhancing Turbine Deposition Prediction Capability With Conjugate Mesh Morphing

Author:

Bowen Christopher P.1,Bons Jeffrey P.1

Affiliation:

1. Ohio State University, Columbus, Ohio, United States

Abstract

Abstract A framework for performing mesh morphing in a conjugate simulation in the commercial Computational Fluid Dynamics (CFD) software ANSYS Fluent is presented and validated. A procedure for morphing both the fluid and solid domains to simulate the protrusion of deposit into the fluid while concurrently altering and adding to the solid regions is detailed. The ability to delineate between the original metal sections of the solid and the morphed regions which represent deposit characteristics is demonstrated. The validity and predictive capability of the process is tested through simulation of a canonical impingement jet. A single over-sized impingement jet (6.35 mm) at 894 K and an average flow velocity of 56.5 m/s is used to heat a nickel-alloy target plate. One gram of 0-5 μm Arizona Road Dust (ARD) is delivered to the target and a Particle Shadow Velocimetry (PSV) technique is used to capture the transient growth of the deposit structure on the target. Thermal infrared images are taken on the backside of the target and synchronized with the PSV images. The experiment is modeled computationally using the Fluent Discrete Phase Model (DPM) and the Ohio State University (OSU) Deposition Model for sticking prediction. The target is morphed according to the particulate volume prediction. The deposit regions are assigned an effective conductivity (keff) representative of porous deposit, and the fluid and thermal computations are reconverged. 10 mesh morphing iterations are performed accounting for the first half of the experiment. The morphed deposit volume and height are compared to the experiment and show reasonable agreement. The backside target temperatures are also compared, and the simulations show the ability to predict the reduction in temperature that occurs as the growing deposit insulates the metal surface. It is demonstrated that the assignment of unique thermal conductivities to the deposit and metal cells within the solid is critical. With a more robust and accurate implementation of the deposit keff, this conjugate mesh morphing framework shows potential as a tool for predicting the thermal impact of deposition.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3