Model Verification of Mist/Steam Cooling With Jet Impingement Onto a Concave Surface and Prediction at Elevated Operating Conditions

Author:

Wang Ting1,Dhanasekaran T. S.1

Affiliation:

1. Energy Conversion and Conservation Center, University of New Orleans, New Orleans, LA 70148-2220

Abstract

Internal mist/steam blade cooling technology is proposed for advanced gas turbine systems that use the closed-loop steam cooling scheme. Previous experiments on mist/steam heat transfer with a 2D slot jet impingement onto a concave surface showed cooling enhancement of up to 200% at the stagnation point by injecting approximately 0.5% of mist under low temperature and pressure laboratory conditions. Realizing the difficulty in conducting experiments at elevated pressure and temperature working conditions, computational fluid dynamics (CFD) simulation becomes an opted approach to predict the potential applicability of the mist/steam cooling technique at real GT operating conditions. In this study, the CFD model is first validated within 3% and 6% deviations from experimental results for the flows of steam-only and mist/steam flow cases, respectively. The validated CFD model is then used to simulate a row of multiple holes impinging jet onto a concave surface under elevated pressure, temperature, and Reynolds number conditions. The predicted results show an off-center cooling enhancement with a local maximum of 100% at s/d=2 and an average cooling enhancement of about 50%. The mist cooling scheme is predicted to work better on a concave surface than on the flat surface. The extent of wall jet and the size of 3D recirculation zones are identified as a major influencing parameter on the curvature effect on mist cooling performance. The mist enhancement from a slot jet is more pronounced than a row of round jets. The effects of wall heat flux and mist ratio on mist cooling performance are also investigated in this study.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3