Affiliation:
1. Mechanical Engineering Department and Lawrence Berkeley Laboratory, University of California, Berkeley, CA. 94720
Abstract
Flame radiation, the dominant heat transfer mechanism in many combustion and fire safety related problems, is primarily controlled by the fraction of flame volume occupied by solid carbon particulate. A multi-wavelength laser transmission technique is used here to measure carbon particulate volume fractions and approximate particle size distributions in ten common solid, cellular and liquid fueled small scale, 0 (10 cm dia), pool fire diffusion flames. The most probable particle radius, rmax, and concentration, N0, are two parameters in the assumed gamma function size distribution form which are determined for each fuel by simultaneously measuring light transmission of two superimposed laser wavelengths. The resulting soot volume fractions range from fv ∼ 4 × 10−6 for cellular polystyrene to fv ∼ 7 × 10−8 for alcohol. Cellular polystyrene has the largest particles, rmax ∼ 60 nm while wood has the smallest, rmax ∼ 20 nm. The carbon particulate optical properties used in the analysis are shown to be representative of actual flame soot and are more accurate than the soot refractive index usually assumed in the literature. Finally, mean particle sizes obtained for all fuels indicate that the small particle absorption limit assumption is a reasonable approximation for infrared flame radiation calculations.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献