A Three-Equation Variant of the SST k-ω Model Sensitized to Rotation and Curvature Effects

Author:

Dhakal Tej P.1,Walters D. Keith1

Affiliation:

1. Department of Mechanical Engineering, Center for Advanced Vehicular Systems, MS State University, MS State, MS 39762

Abstract

A new variant of the SST k-ω model sensitized to system rotation and streamline curvature is presented. The new model is based on a direct simplification of the Reynolds stress model under weak equilibrium assumptions [York et al., 2009, “A Simple and Robust Linear Eddy-Viscosity Formulation for Curved and Rotating Flows,” International Journal for Numerical Methods in Heat and Fluid Flow, 19(6), pp. 745–776]. An additional transport equation for a transverse turbulent velocity scale is added to enhance stability and incorporate history effects. The added scalar transport equation introduces the physical effects of curvature and rotation on turbulence structure via a modified rotation rate vector. The modified rotation rate is based on the material rotation rate of the mean strain-rate based coordinate system proposed by Wallin and Johansson (2002, “Modeling Streamline Curvature Effects in Explicit Algebraic Reynolds Stress Turbulence Models,” International Journal of Heat and Fluid Flow, 23, pp. 721–730). The eddy viscosity is redefined based on the new turbulent velocity scale, similar to previously documented k-ɛ- υ2 model formulations (Durbin, 1991, “Near-Wall Turbulence Closure Modeling without Damping Functions,” Theoretical and Computational Fluid Dynamics, 3, pp. 1–13). The new model is calibrated based on rotating homogeneous turbulent shear flow and is assessed on a number of generic test cases involving rotation and/or curvature effects. Results are compared to both the standard SST k-ω model and a recently proposed curvature-corrected version (Smirnov and Menter, 2009, “Sensitization of the SST Turbulence Model to Rotation and Curvature by Applying the Spalart-Shur Correction Term,” ASME Journal of Turbomachinery, 131, pp. 1–8). For the test cases presented here, the new model provides reasonable engineering accuracy without compromising stability and efficiency, and with only a small increase in computational cost.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3