Evaporation Dynamics of Deionized Water Droplets on Rough Substrates: The Coupling of Stick-Jump Motion and Evaporation

Author:

Bin Liu12,Li Zhuorui3,Bi Lisen34,Hu Hengxiang3,Zeng Tao34,Li Rui34,Theodorakis Panagiotis E.5

Affiliation:

1. Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce , Tianjin 300134, China ; , Tianjin 300134, China

2. International Centre in Fundamental and Engineering Thermophysics, Tianjin University of Commerce , Tianjin 300134, China ; , Tianjin 300134, China

3. Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce , Tianjin 300134, China

4. Tianjin University of Commerce

5. Polish Academy of Sciences, Institute of Physics , Al. Lotników 32/46, Warsaw 02-668, Poland

Abstract

Abstract Substrate roughness can greatly affect the evaporation of sessile droplets, thus determining the efficiency of applications, such as ink-jet printing and coating. Here, we conduct experiments on the evaporation of de-ionized water droplets on glass substrates with roughness in the range 0.1–0.2 μm to investigate its effect on the dynamics of the contact angle and radius, as well as the heat and mass transfer during evaporation. We discover a “stick-jump” phenomenon as part of a five-stage process that is determined by the evolution characteristics of the contact angle and radius and includes the volume expansion, first stick, second stick, jump and final stages. Moreover, we find that the evaporation mode of the droplets is not affected by the increase of substrate roughness, whereas the heat and mass transfer processes intensify with the increase of substrate roughness in the presence of nonuniform evaporation effects. Also, the pinning–depinning mechanism of the “stick-jump” phenomenon during evaporation is carefully analyzed in terms of the Gibbs free energy, thus establishing a relation among Gibbs and excess Gibbs free energies and substrate roughness, which predicts the evaporation dynamics of the droplet. We anticipate that this study unravels key aspects of the droplet evaporation mechanisms on rough substates toward optimizing and advancing relevant technology applications.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3