Application of the u-p Finite Element Method to the Study of Articular Cartilage

Author:

Wayne Jennifer S.1,Woo Savio L.-Y.1,Kwan Michael K.1

Affiliation:

1. Orthopaedic Bioengineering Laboratory, San Diego Veterans Affairs Medical Center & University of California, San Diego, La Jolla, CA 92093; Musculoskeletal Research Laboratories, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261

Abstract

The finite element method using the principle of virtual work was applied to the biphasic theory to establish a numerical routine for analyses of articular cartilage behavior. The matrix equations that resulted contained displacements of the solid matrix (u) and true fluid pressure (p) as the unknown variables at the element nodes. Both small and large strain conditions were considered. The algorithms and computer code for the analysis of two-dimensional plane strain, plane stress, and axially symmetric cases were developed. The u-p finite element numerical procedure demonstrated excellent agreement with available closed-form and numerical solutions for the configurations of confined compression and unconfined compression under small strains, and for confined compression under large strains. The model was also used to examine the behavior of a repaired articular surface. The differences in material properties between the repair tissue and normal cartilage resulted in significant deformation gradients across the repair interface as well as increased fluid efflux from the tissue.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3