Assessment of Need for Solder in Modeling Potted Electronics During Gun-Shot

Author:

Reinhardt L. E.1,Cordes J. A.,Haynes A. S.,Metz J. D.2

Affiliation:

1. e-mail:

2. RDAR-MEF-E, Analysis and Evaluation Technology Division, U.S. Army Armament Research Development and Engineering Center, Picatinny Arsenal, NJ 07806

Abstract

Smart projectiles use electronic components such as circuit boards with integrated circuits to control guidance and fusing operations. During gun-launch, the electronics are subjected to 3-dimensional g-forces as high as 15,000 G. The U.S. Army uses finite element analysis to simulate electronics with high-g, dynamic loads. Electronics are difficult to model due to the large variation in size, from large circuit boards, to very small solder joints and solder pads. This means that to accurately model such small features would require very large models that are computationally expensive to analyze; often beyond the capability of resources available. Therefore, small features such as solder joints are often not included in the finite element models to make the models computationally tractable. The question is: what is the effect on model accuracy without these small features in the model? The purpose of this paper is to evaluate the effect that solder joints and solder pads have on the accuracy of the structural analysis of electronic components mounted on circuit boards during gun shot. Finite element models of simplified circuit boards, chips, and potting were created to do the evaluation. Modal analysis and dynamic structural analysis using typical gun loads were done. Both potting at high temperature (soft) and potting at low temperature (stiff) were used in the dynamic analysis. In the modal analysis there was no potting. All of these models were run with and without solder. In all cases, the results differed between the models with solder and those without. In the models with potting, there was a difference in magnitude and stress distribution between the models with and without solder. This indicates that there is a significant reduction in accuracy when solder is not included in the model.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference20 articles.

1. Excalibur XM982 Precision Engagement Projectiles,2009

2. Fan, X., Pei, M., and Bhatti, P. K., 2006, “Effect of Finite Element Modeling Techniques on Solder Joint Fatigue Life Prediction of Flip-Chip BGA Packages,” 56th Proceedings of theIEEE, Electronic Components and Technology Conference, San Diego, CA, May 30–June 2.10.1109/ECTC.2006.1645772

3. Modeling Thermally Induced Viscoplastic Deformation and Low Cycle Fatigue of CBGA Solder Joints in a Surface Mount Package;IEEE Trans. Compon., Packag., Manuf. Technol., Part A,1997

4. Solder Joint Reliability in Electronics Under Shock and Vibration Using Explicitly Finite-Element Submodeling;IEEE Trans. Electron. Packag. Manuf.,2007

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3