Foot and Ankle Joint Biomechanical Adaptations to an Unpredictable Coronally Uneven Surface

Author:

Segal Ava D.1,Yeates Kyle H.23,Neptune Richard R.4,Klute Glenn K.23

Affiliation:

1. Center for Limb Loss and Mobility, Department of Veterans Affairs, 1660 S. Columbian Way, MS-151, Seattle, WA 98108 e-mail:

2. Center for Limb Loss and Mobility, Department of Veterans Affairs, 1660 S. Columbian Way, MS-151, Seattle, WA 98108;

3. Department of Mechanical Engineering, University of Washington, Seattle, WA 98195 e-mail:

4. Mem. ASME Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712 e-mail:

Abstract

Coronally uneven terrain, a common yet challenging feature encountered in daily ambulation, exposes individuals to an increased risk of falling. The foot-ankle complex may adapt to improve balance on uneven terrains, a recovery strategy which may be more challenging in patients with foot-ankle pathologies. A multisegment foot model (MSFM) was used to study the biomechanical adaptations of the foot and ankle joints during a step on a visually obscured, coronally uneven surface. Kinematic, kinetic and in-shoe pressure data were collected as ten participants walked on an instrumented walkway with a surface randomly positioned ±15 deg or 0 deg in the coronal plane. Coronally uneven surfaces altered hindfoot–tibia loading, with more conformation to the surface in early than late stance. Distinct loading changes occurred for the forefoot–hindfoot joint in early and late stance, despite smaller surface conformations. Hindfoot–tibia power at opposite heel contact (@OHC) was generated and increased on both uneven surfaces, whereas forefoot–hindfoot power was absorbed and remained consistent across surfaces. Push-off work increased for the hindfoot–tibia joint on the everted surface and for the forefoot–hindfoot joint on the inverted surface. Net work across joints was generated for both uneven surfaces, while absorbed on flat terrain. The partial decoupling and joint-specific biomechanical adaptations on uneven surfaces suggest that multi-articulating interventions such as prosthetic devices and arthroplasty may improve ambulation for mobility-impaired individuals on coronally uneven terrain.

Funder

U.S. Department of Veterans Affairs

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3