Nondestructive Detection of Cartilage Degeneration Using Electromechanical Surface Spectroscopy

Author:

Berkenblit Scott I.1,Frank Eliot H.1,Salant Evan P.1,Grodzinsky Alan J.1

Affiliation:

1. Continuum Electromechanics Group, Laboratory for Electromagnetic and Electronic Systems, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139; Harvard-M.I.T. Division of Health Sciences and Technology

Abstract

We have constructed an electrokinetic surface probe capable of applying small sinusoidal currents to the surface of articular cartilage and measuring the resulting current-generated stress with a piezoelectric sensor. Using the probe, we have characterized the electromechanical response of excised discs of normal and chemically modified adult bovine femoropatellar groove cartilage. The measured stress amplitude was proportional to the applied current density and inversely proportional to the excitation frequency, consistent with a poroelastic model. As a function of bath pH, the stress amplitude exhibited a minimum in the range pH 2.4–2.8 and the phase underwent an abrupt 180° transition in the same range, consistent with an electrokinetic mechanism as the origin of the current-generated mechanical stress. Digestion of the tissue with trypsin resulted in a progressive loss of highly charged proteoglycan molecules from the tissue, with a concomitant decrease in the measured stress amplitude. These results support the feasibility of surface measurements as a means of assessing electromechanical transduction in cartilage and of detecting subtle molecular-level degradative changes in the extracellular matrix. This technique of surface spectroscopy provides a new means of nondestructively measuring the material properties of cartilage on intact joints and detecting degradative changes such as those seen in the earliest stages of osteoarthritis.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3