Affiliation:
1. Department of Mechanical Engineering, The University of Akron, Akron, OH 44325
2. NASA Lewis Research Center, Cleveland, OH 44135
Abstract
The goal set forth here is to continue the work started by Braun et al. [11] and present an integrated analysis of the behavior of the two row, 20 staggered pockets, hydrostatic cryogenic bearing used by the turbopumps of the space shuttle main engine (SSME). The variable properties Reynolds equation is fully coupled with the 2-D fluid film energy equation [η = η(P, T)]. The 3-D equations of the shaft and bushing model the boundary conditions of the fluid film energy equation. The effects of shaft eccentricity, angular velocity and inertia pressure drops at pocket edge are incorporated in the model. Their effects on the bearing fluid properties, load carrying capacity, mass flow, pressure, velocity and temperature form the ultimate object of this paper.
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献