On the Stability of Gas Lubricated Triboelements Using the Step Jump Method

Author:

Miller B.1,Green I.1

Affiliation:

1. George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405

Abstract

The step jump method was developed approximately three decades ago to help determine the stability of gas lubricated triboelements. In the approach, the force contribution from the gas layer is characterized by its step response, which is the transient force response resulting from pressure diffusion in the gas film after a step increase in film thickness. The procedure is broadened by implementing Duhamel’s theorem to yield the system characteristic equation. Since its inception in the literature, the step response has been approximated in the equations of motion using a series of Laguerre polynomials, which allows for a closed form analysis. This paper will prove that using Laguerre polynomials can violate the second law of thermodynamics, and a test case will show that stability results predicted by this approach can be inaccurate. It will be proven that a mathematical correlation exists between the dynamic behavior of the gas film and the dynamic behavior of a linear viscoelastic medium. This correlation is advantageous since much of the viscoelastic theory can be applied to the dynamic analysis of gas lubricated triboelements.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3