A New FEM Approach for Simulation of Metal Foam Filled Tubes

Author:

Strano Matteo1

Affiliation:

1. Politecnico di Milano, Dipartimento di Meccanica, Via La Masa 1, 20156 Milan, Italy

Abstract

The combination of thin metal cases or tubes with a filling made of metal foams is interesting and promising for many applications in mechanical engineering. Components made of an outer hollow thin compact metal structure and a cellular lightweight core are especially suited to energy absorption applications. In order to allow for an efficient product/process design with a concurrent engineering approach, reliable and computationally affordable finite element method (FEM) calculations are required by both product and process engineers. The structural performance of these complex composite parts must be numerically predicted, in order to find the optimal combination of outer structure and metal foam properties. While FEM simulation at large deformations of bending, crushing, etc. of thin sheets and tubes is state of the art, the accurate FEM simulation of the mechanical behavior of metal foams cannot be considered fully established. In this paper the three most common methods for FEM simulation of metal foam materials are discussed: (a) homogenization approach, (b) realistic reconstruction of tomographic data, and (c) repetition of standard unit cells. A new effective approach is proposed, suited for simulation of composite, metal foam filled, structures of realistic dimensions. The approach is based on meshing the metal foam by replicating a unit cell made of 32 triangular shell elements, and then by randomizing the nodal position in order to emulate the intrinsic homogeneity of foam morphology. The method is validated by means of different experimental tests. The results show that the proposed method correctly predicts the behavior of foam structures in axial compression. The method slightly overestimated the actual load registered in three point bending tests. Several improvements are described and discussed in the paper, such as randomization of nodal positions of the mesh, in order to reduce the overestimation of forces. An FEM approach for the simulation of large deformations of metal foam filled metal structure (e.g., tubes) suited for the design of realistic large dimensions structural components has been presented. The proposed method shows some innovative features with respect to the available scientific literature, such as a configuration based on octahedral unit cells with low number of triangular shell elements. Randomization of nodal positions of each unit cell has been implemented as a method for better representing the intrinsic variability of metal foams and for reducing the stiffness of the simulated structure.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3