Active Vibration Control of the Flexible Rotor to Pass the First Bending Critical Speed in High Energy Density Magnetically Suspended Motor

Author:

Tang Enqiong1,Fang Jiancheng2,Zheng Shiqiang1,Jiang Dikai3

Affiliation:

1. Science and Technology on Inertial Laboratory, Beihang University, Shining Building 403, Xueyuan Road, Beijing 100191, China e-mail:

2. Professor Science and Technology on Inertial Laboratory, Beihang University, Shining Building 403, Xueyuan Road, Beijing 100191, China e-mail:

3. 18th Institute of China Academy of Launch Vehicle Technology, Nandahongmen Road No.1, Beijing 100076, China e-mail:

Abstract

In order to minimizing the rotor displacement and the amplifier current mainly caused by the unbalance forces when the flexible rotor passes the first bending critical speed, the optimal controller is presented in this paper. The accurate modeling method for the flexible rotor based on the sine sweeping measurements is investigated. The design of the Kalman estimator and the choice of the variance matrix elements have been described. The optimal state feedback regulator with an integral controller has been used for stabilizing the system and the determination of the weight matrices has been investigated in detail. The influences of the specific elements of the weight matrices on the resonance peak of the flexible rotor when passing the first bending critical speed are analyzed. Finally, the running up test of the flexible rotor is implemented and the result shows the effectiveness of linear quadratic Gaussian (LQG) controller minimizing the rotor displacement and the amplifier current nearby the first bending critical speed. Furthermore, the comparison between the proportional-integral-differential (PID) controller with phase lead compensator and the LQG controller verifies the superiority of LQG controller in reducing the amplifier currents.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3