Efficient Simulation of Gear Contacts Including Transient Elastohydrodynamic Effects

Author:

Fietkau Peter1,Bertsche Bernd2

Affiliation:

1. e-mail:

2. Institute of Machine Components, University of Stuttgart, Pfaffenwaldring 9, Stuttgart, 70569, Germany

Abstract

This paper describes an efficient transient elastohydrodynamic simulation method for gear contacts. The model uses oil films and elastic deformations directly in the multibody simulation, and is based on the Reynolds equation including squeeze and wedge terms as well as an elastic half-space. Two transient solutions to this problem, an analytical and a numerical one, were developed. The analytical solution is accomplished using assumptions for the gap shape and the pressure in the middle of the gap. The numerical problem is solved using multilevel multi-integration algorithms. With this approach, tooth impacts during gear rattling as well as highly loaded power-transmitting gear contacts can be investigated and lubrication conditions like gap heights or type of friction may be determined. The method was implemented in the multibody simulation environment SIMPACK. Therefore it is easy to transfer the developed element to other models and use it for a multitude of different engineering problems. A detailed three-dimensional elastic multibody model of an experimental transmission is used to validate the developed method. Important values of the gear contact like normal and tangential forces, proportion of dry friction, and minimum gap heights are calculated and studied for different conditions. In addition, pressure distributions on tooth flanks as well as gap forms are determined based on the numerical solution method. Finally, the simulation approach is validated with measurements and shows good consistency. The simulation model is therefore capable of predicting transient gear contact under different operating conditions such as load vibrations or gear rattling. Simulations of complete transmissions are possible and therefore a direct determination of transmission vibration behavior and structure-borne noise as well as of forces and lubrication conditions can be done.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Reference52 articles.

1. Modelling and Simulation of Drive Line Gears;SIMPACK News,2005

2. A Model for Simulating the Quasi-Static and Dynamic Behaviour of Solid Wide-Faced Spur and Helical Gears;Mech. Mach. Theory,2005

3. Development of a Force Element for the Emulation of the Dynamic Behaviour of Bevel Gears,2009

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3