Experimental Research on Tribological Properties of Mn0.78Zn0.22Fe2O4 Magnetic Fluids

Author:

Li-jun Wang1,Chu-wen Guo2,Yamane Ryuichiro3

Affiliation:

1. China University of Mining and Technology, Xuzhou, Jiangsu 221116, P.R.C.; Kokushikan University, 4-28-1 Setagaya, Setagaya-ku, Tokyo 154-8515, Japan

2. China University of Mining and Technology, Xuzhou, Jiangsu 221116, P.R.C.

3. Kokushikan University, 4-28-1 Setagaya, Setagaya-ku, Tokyo 154-8515, Japan

Abstract

The synthesis and application of nanometer-sized particles have received considerable attention in recent years because of their different physical and chemical properties from those of the bulk materials or individual molecules; however, few experimental investigations on the tribological properties of lubricating oils with and without nanoferromagnetic particles have been performed. This work investigates the tribological properties of Mn0.78Zn0.22Fe2O4 nanoferromagnetic as additive in 46# turbine oil using a four-ball friction and wear tester. It is shown that the 46# turbine oil containing Mn0.78Zn0.22Fe2O4 nanoparticles has much better friction reduction and antiwear abilities than the base oil. The 46# turbine oil doped with 6wt%Mn0.78Zn0.22Fe2O4 nanoparticles show the best tribological properties among the tested oil samples, and PB value is increased by 26%, and the decreasing percentage of wear scar diameter is 25.45% compared to base oil.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3