Automated Wall Thickness Evaluation for Turbine Blades Using Robot-Guided Ultrasonic Array Imaging

Author:

Hassenstein Christian1,Heckel Thomas1,Tomasson Ingimar1,Vöhringer Daniel2,Berendt Torsten3,Wassermann Jonas3,Prager Jens4

Affiliation:

1. Bundesanstalt für Materialforschung, und -prüfung (BAM) , Unter den Eichen 87, Berlin 12205 , Germany

2. Siemens Energy Global GmbH & Co. KG , Nonnendamm 55, Berlin 13629 , Germany

3. KleRo Roboterautomation GmbH , Siegfriedstraße 152, Berlin 10365 , Germany

4. Bundesanstalt für Materialforschung, und -prüfung (BAM) , Unter den Eichen 87, Berlin 12205 , Germany

Abstract

Abstract Nondestructive testing has become an essential part of the maintenance of modern gas turbine blades and vanes since it provides an increase in both safety against critical failure and efficiency of operation. Targeted repairs of the blade's airfoil require localized wall thickness information. This information, however, is hard to obtain by nondestructive testing due to the complex shapes of surfaces, cavities, and material characteristics. To address this problem, we introduce an automated nondestructive testing system that scans the part using an immersed ultrasonic array probe guided by a robot arm. For imaging, we adopt a two-step, surface-adaptive Total Focusing Method (TFM) approach. For each test position, the TFM allows us to identify the outer surface, followed by calculating an adaptive image of the interior of the part, where the inner surface's position and shape are obtained. To handle the large volumes of data, the surface features are automatically extracted from the TFM images using specialized image processing algorithms. Subsequently, the collection of 2D extracted surface data is merged and smoothed in 3D space to form the outer and inner surfaces, facilitating wall thickness evaluation. With this approach, representative zones on two gas turbine vanes were tested, and the reconstructed wall thickness values were evaluated via comparison with reference data from an optical scan. For the test zones on two turbine vanes, average errors ranging from 0.05 mm to 0.1 mm were identified, with a standard deviation of 0.06–0.16 mm.

Funder

Bundesanstalt für Materialforschung und -Prüfung

Publisher

ASME International

Reference50 articles.

1. A Critical Review on Gas Turbine Cooling Performance and Failure Analysis of Turbine Blades;Chowdhury;Int. J. Thermofluids,2023

2. Failure Mechanisms in Turbine Blades of a Gas Turbine Engine—An Overview;Rao;Int. J. Eng. Res. Dev.,2014

3. Robot-Operated Inspection of Aircraft Engine Turbine Rotor Guide Vane Segment Geometry;Burghardt;Tech. Gaz.,2017

4. Advances in Inspection Automation;Weber;AIP Conf. Proc,2013

5. Robotic non-Destructive Testing;Sattar;Ind. Rob.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3