Effects of Temperature on Internal Resistances of Lithium-Ion Batteries

Author:

Hossain Ahmed Sazzad1,Kang Xiaosong2,Bade Shrestha S. O.3

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Western Michigan University, Kalamazoo, MI 49008

2. Hybrid Power, Eaton Corporation, Galesburg, MI 49053

3. Department of Mechanical and Aerospace Engineering, Western Michigan University, Kalamazoo, MI 49008 e-mail:

Abstract

The performance of a lithium-ion battery is significantly dependent on temperature conditions. At subzero temperatures, due to higher resistances, it shows lower capacity and power availability that may affect adversely applications of these batteries in vehicles particularly in cold climate environment. To investigate internal resistances, LiMnNiO and LiFePO4 batteries were tested at wide temperature ranges from 50 °C to −20 °C. Using impedance spectroscopy, major internal resistances such as cathode interfacial, anode interfacial and conductive, have been identified by using a simple equivalent circuit. Results showed that at subzero temperatures the anode interfacial resistance was almost twice than the cathode interfacial resistance. A simple model of the individual resistance increment as a function of temperature has also been presented at the end of the paper. In addition, dependency of cell impedance on state of charge (SOC) and temperature has also been analyzed from the test results.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3