A Longitudinal Model Based Probabilistic Fault Diagnosis Algorithm of Autonomous Vehicles Using Sliding Mode Observer

Author:

Oh Kwangseok1,Yi Kyongsu2

Affiliation:

1. Honam University, Gwangju, South Korea

2. Seoul National University, Seoul, South Korea

Abstract

This paper describes a longitudinal model based probabilistic fault diagnosis algorithm of autonomous vehicles using sliding mode observer. Autonomous vehicles use various sensors such as radar, lidar, and camera to obtain environment information. And internal sensors such as wheel speed, acceleration, and steering angle sensors have been used in vehicle to measure vehicle dynamic states. Based on the measured environment and vehicle states information, autonomous vehicle decides how to drive and control steering, throttle, and brake. Therefore, fault diagnosis of sensors used in autonomous vehicles is the most important for safe driving. In order to diagnosis longitudinal acceleration sensor fault of autonomous vehicle, longitudinal kinematic model has been used. The relative acceleration has been reconstructed using sliding mode observer based on environment information such as relative displacement and velocity between preceding vehicle and subject vehicle. The reconstructed relative acceleration has been used to compute longitudinal acceleration probabilistically based on analyzed longitudinal vehicle’s acceleration. The computed acceleration has been compared with measured acceleration for fault diagnosis of the acceleration sensor. The probabilistic fault diagnosis algorithm has been proposed and evaluated using actual data with arbitrary fault signal. The evaluation results of the proposed fault diagnosis algorithm show the reasonable fault diagnosis performance.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3