Aeromechanical Control of High-Speed Axial Compressor Stall and Engine Performance—Part II: Assessments of Methodology

Author:

Coleman K. L.1,McGee, III O. G.2

Affiliation:

1. Graduate School of Design, Harvard University, Cambridge, MA 02139

2. Professor Mechanical Engineering, Howard University, Washington, DC 20059

Abstract

A theoretical assessment was made explaining how aeromechanical feedback control can be implemented to stabilize rotating stall inception in high-speed axial compression systems. Ten aeromechanical control strategies were quantitatively evaluated based on the control-theoretic formulations and dimensionless performance analysis outlined in the Part I companion paper (McGee and Coleman, 2013, “Aeromechanical Control of High-Speed Axial Compressor Stall and Engine Performance—Part I: Control-Theoretic Models,” ASME J. Fluids Eng., 135(3), p. 031101). The maximum operating range for each aeromechanical control scheme was predicted for optimized structural parameters. Predictability and changeability in the hydrodynamic pressure, temperature, density, operability, and aeromechanical performance of dynamically-compensated, high-speed compressor maps of corrected pressure, corrected mass flow, corrected speeds, temperature ratios, and optimum efficiency were compared for the various aeromechanical control strategies. Compared with dynamically-compensated, low-speed compressor maps of pressure rise and flow coefficient (Gysling and Greitzer, 1995, “Dynamic Control of Rotating Stall in Axial Flow Compressors Using Aeromechanical Feedback,” ASME J. Turbomach., 117(3), pp. 307–319; McGee et al., 2004, “Tailored Structural Design and Aeromechanical Control of Axial Compressor Stall—Part I: Development of Models and Metrics, ASME J. Turbomach, 126(1), pp. 52–62; Fréchette et al., 2004, “Tailored Structural Design and Aeromechanical Control of Axial Compressor Stall—Part II: Evaluation of Approaches,” ASME J. Turbomach., 126(1), pp. 63–72), the present study shows that the most promising aeromechanical designs and controls for a class of high-speed compressors were the use of dynamic fluid injection. Dynamic compensations involving variable duct geometries and dynamically-re-staggered IGV and rotor blades were predicted to yield less controllability under high-speed flow environments. The aeromechanical interaction of a flexible casing wall was predicted to be destabilizing, and thus should be avoided in high-speed compression systems as in low-speed ones by designing sufficiently rigid structures to prevent casing ovalization or other structurally-induced variations in tip clearance.

Publisher

ASME International

Subject

Mechanical Engineering

Reference27 articles.

1. Aeromechanical Control of High-Speed Axial Compressor Stall and Engine Performance—Part I: Control-Theoretic Models;ASME J. Fluids Eng.,2013

2. Dynamic Control of Rotating Stall in Axial Flow Compressors Using Aeromechanical Feedback;ASME J. Turbomach.,1995

3. Tailored Structural Design and Aeromechanical Control of Axial Compressor Stall—Part I: Development of Models and Metrics;ASME J. Turbomach.,2004

4. Tailored Structural Design and Aeromechanical Control of Axial Compressor Stall—Part II: Evaluation of Approaches;ASME J. Turbomach.,2004

5. Fréchette, L. G., 1997, “Implications of Stability Modeling for High-Speed Axial Compressor Design,” M.S. thesis, Department of Aeronautics and Astronautics, MIT,Cambridge, MA.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3