Affiliation:
1. State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract
Abstract
In a conventional liquid cooling garment (LCG), overcooling of the water inlet temperature shortens the working time and worsens thermal comfort. Such problems have not been well solved so far. In this study, we propose a smart cooling garment with a developed temperature regulation system, effectively reducing un-necessary loss of power consumption and hence extending the work duration. Testing on a thermal manikin was conducted to evaluate the performance of temperature-regulating LCG. The results showed that, compared to the conventional LCG, the proposed system achieved the rapid and accurate adjustment of water temperature, improved the working time by more than 37% with the total weight barely increased, and ensured the thermal comfort of the wearers. The developed LCG opens the possibility for the smart control of the temperature, fitting for the user's preferences regarding the working time and thermal comfort sensations.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献