Performance Improvement of a Thermoacoustic Stirling Engine With In-Line Phase-Adjuster

Author:

Dhuchakallaya Isares1,Saechan Patcharin2

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering, Thammasat University, Klong-Luang, Pathumthani 12120, Thailand

2. Department of Mechanical and Aerospace Engineering, Faculty of Engineering, King Mongkut’s University of Technology North Bangkok, Bangsue, Bangkok 10800, Thailand

Abstract

Abstract This study examined the influence of an in-line phase-adjuster on the energy conversion efficiency of a thermoacoustic Stirling heat engine (TASHE). The numerical and experimental investigations were performed. An acoustic field in the system can be adjusted using the phase-adjuster. Therefore, the thermoacoustic engine could maintain high-level performance at all operating conditions. The engine is composed of a torus section where core components were located, and a long resonator pipe. The phase-adjuster or the telescopic in-line piston was set up at the tail of the resonance tube. The TASHE was modeled by employing DeltaEC to search the optimal configurations of the prototype. Due to the variations of acoustic loads or operating conditions from the design criteria, the engine absolutely cannot maintain maximum efficiency. The proposed phase-adjuster could bring back its maximum efficiency by re-matching the acoustic impedance in the regenerator. The TASHE was designed to operate with compressed air at 9 bar. In the experiments, the self-excited temperature of the engine was around 480 °C, and the steady-state temperature was about 397 °C. The TASHE can provide an acoustic power of up to 40 W. The thermo-to-acoustic efficiency of 12.03% related to 22.56% of the theoretical Carnot efficiency was achieved. There was a reasonably good agreement between the measured and DeltaEC simulation results. This can reflect on the preciseness of the proposed model. Furthermore, the function of the phase-adjuster in tuning the acoustic impedance was also demonstrated experimentally. In case of the TASHE being operated under the off-design conditions, i.e., due to pressure leak or heat losses, these scenarios would drop the efficiency of the system. The research presented in this study can confirm that the phase-adjuster is the component applied to tune the acoustic field in the regenerator accurately with minimum changes in the system. It could help to improve the efficiency of such consequences.

Funder

King Mongkut's University of Technology North Bangkok

Thammasat University

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference26 articles.

1. Thermoacoustic Engines;Swift;J. Acoust. Soc. Am.,1988

2. A Pistonless Stirling Engine—The Traveling Wave Heat Engine;Ceperley;J. Acoust. Soc. Am.,1979

3. Traveling Wave Thermoacoustic Engine in a Looped Tube;Yazaki;Phys. Rev. Lett.,1998

4. A Thermoacoustic-Stirling Heat Engine: Detailed Study;Backhaus;J. Acoust. Soc. Am.,2000

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3