Two Simple Numerical Implementation Methods for Damage-Coupled Viscoplastic Constitutive Model

Author:

Wang YuanLiang1,Liao YanQing1,Peng JiaHui1,Ni YongZhong1,Xu Hong1

Affiliation:

1. North China Electric Power University School of Energy, Power and Mechanical Engineering, , Beijing 102206 , China

Abstract

Abstract This paper is concerned with the two simple numerical implementation methods for a damage-coupled Chaboche-type viscoplastic constitutive model. By considering the damage variable as a constant in each incremental step, the return-mapping procedure is reduced to the solution of only one nonlinear scalar equation. Depending on the use of damage value in the current or prior incremental state, the two methods are named the backward difference implicit integration scheme and the two-step explicit integration scheme respectively. These two numerical algorithms are implemented into the ansys software by developing the usermat subroutine and verified by comparing them with available experimental data. Several numerical examples on the Gauss point level are studied in terms of stability, accuracy, computational efficiency, and applicability for further numerical observation. In addition to higher computational efficiency and lower memory requirements, the two methods can be easily extended to other damage models due to their simplicity.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3